Sequential Learning of Analysis Operators

نویسندگان

  • Michael Sandbichler
  • Karin Schnass
چکیده

In this paper two sequential algorithms for learning analysis operators are presented. They are built upon the same optimisation principle underlying both Analysis K-SVD and Analysis SimCO and use a stochastic gradient descent approach similar to ASimCO. The sequential analysis operator learning (SAOL) algorithm is based on projected gradient descent with an appropriately chosen step size while the implicit SAOL (ISAOL) algorithm avoids choosing a step size altogether by using a strategy inspired by the implicit Euler scheme for solving ordinary differential equations. Both algorithms are tested on synthetic and image data in comparison to Analysis SimCO and found to give slightly better recovery rates resp. decay of the objective function. In a final denoising experiment the presented algorithms are again shown to perform well in comparison to the state of the art algorithm ASimCO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Comparing Bandwidth and Self-control Modeling on Learning a Sequential Timing Task

Modeling is a process which the observer sees another person's behavior and adapts his/her behavior with that which is the result of interaction. The aim of present study was to investigate and compare effectiveness of bandwidth modeling and self-control modeling on performance and learning of a sequential timing task. So two groups of bandwidth and self-control were compared. The task was pres...

متن کامل

Investigating Predictors of High School Students’ Negative Attitudes Towards Learning English by Developing, Validating, and Running a Questionnaire

The purpose of this study was to explore the predictors of negative attitudes towards learning English from L2 learners’ points of view. A mixed methods research approach was adopted with a sequential exploratory design, followed by an endorsement phase. Eighteen high school students in Fars province (Iran) were interviewed on the sources of negative attitudes towards learning English. Based on...

متن کامل

An Overview of MAXQ Hierarchical Reinforcement Learning

Reinforcement learning addresses the problem of learning optimal policies for sequential decision-making problems involving stochas-tic operators and numerical reward functions rather than the more traditional deterministic operators and logical goal predicates. In many ways, reinforcement learning research is recapitulating the development of classical research in planning and problem solving....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1704.00227  شماره 

صفحات  -

تاریخ انتشار 2017